
Microprocessor and Programming Procedure and Macro in Assembly Language Program

 Computer Department, Jamia Polytechnic, Akkalkuwa 1

6. Procedure and Macro in Assembly Language Program
16 Marks

Syllabus:

6.1 Defining Procedure - Directives used, FAR and NEAR, CALL and RET instructions,

 Reentrant and recursive procedures, Assembly Language Programs using Procedure

6.2 Defining Macros.

 Assembly Language Programs using Macros.

Procedures:

While writing programs, it may be the case that a particular sequence of instructions is used several

times. To avoid writing the sequence of instructions again and again in the program, the same

sequence can be written as a separate subprogram called a procedure. Each time the sequence of

instructions needs to be executed, CALL instruction can be used. CALL instruction transfers the

execution control to procedure. In the procedure, a RET instruction is used at the end. This will cause

the execution to be transferred to caller program.

Often large programs are split into number of independent tasks which can be easily designed and

implemented. This is known as modular programming.

Advantages:

1. Programming becomes simple.

2. Reduced development time – as each module can be implemented by different persons.

3. Debugging of smaller programs and procedures is easy.

4. Reuse of procedures is possible.

5. A library of procedures can be created to use and distribute.

Disadvantages:

1. Extra code may be required to integrate procedures.

2. Liking of procedures may be required.

3. Processor needs to do extra work to save status of current procedure and load status of called

procedure. The queue must be emptied so that instructions of the procedure can be filled in the

queue.

Defining procedures:

Assembler provides PROC and ENDP directives in order to define procedures. The directive PROC

indicates beginning of a procedure. Its general form is:

Procedure_name PROC [NEAR|FAR]

NEAR | FAR is optional and gives the types of procedure. If not used, assembler assumes the

procedure as near procedure. All procedures are defined in code segment. The directive ENDP

indicates end of a procedure. Its general form is:

Microprocessor and Programming Procedure and Macro in Assembly Language Program

 Computer Department, Jamia Polytechnic, Akkalkuwa 2

Procedure_name ENDP

For example,

Factorial PROC NEAR

. . .

. . .

. . .

Factorial ENDP

CALL instruction:

CALL instruction s used to call a procedure for execution. Before a procedure is called, the CALL

instruction saves the address of instruction, which is next to CALL instruction, on stack. The

procedure call is of two types:

 Intra segment or near call

 Inter segment or far call

A near call is used to call a procedure within same code segment. A far call is used to call a procedure

which is in different code segment. For near call, only value of IP is saved on stack. For a far call,

value of CS and IP is stored on stack.

RET instruction:

This instruction is used to transfer program execution from procedure back to the calling program.

Depending upon type of call, RET instruction may be of two types:

Microprocessor and Programming Procedure and Macro in Assembly Language Program

 Computer Department, Jamia Polytechnic, Akkalkuwa 3

 Near RET or intra segment return

 Far RET or inter segment return

If procedure is declared as near, RET instruction copies a word from top of stack (TOS) into IP. If

procedure is declared as far, RET instruction copies a word from top of stack (TOS) into IP, stack

pointer is decremented by 2 and again a word is copied from TOS into CS register.

Example: Program using procedures

Following example shows how to define and use near procedure (i.e. a procedure within same code

segment).

ASSUME CS:CODE, DS:DATA, SS:STACK_SEG

DATA SEGMENT

NUM1 DB 50H

NUM2 DB 20H

ADD_RES DB ?

SUB_RES DB ?

DATA ENDS

STACK_SEG SEGMENT

DW 40 DUP(0) ; stack of 40 words, all initialized to zero

TOS LABEL WORD

STACK_SEG ENDS

CODE SEGMENT

START: MOV AX, DATA ; initialize data segment

MOV DS, AX

MOV AX, STACK_SEG ; initialize stack segment

MOV SS, AX

MOV SP, OFFSET TOS ; initialize stack pointer to TOS

CALL ADDITION

CALL SUBTRACTION

MOV AH, 4CH

INT 21H

ADDITION PROC NEAR

MOV AL, NUM1

MOV BL, NUM2

ADD AL, BL

MOV ADD_RES, AL

RET

Microprocessor and Programming Procedure and Macro in Assembly Language Program

 Computer Department, Jamia Polytechnic, Akkalkuwa 4

ADDITION ENDP

SUBTRACTION PROC

MOV AL, NUM1

MOV BL, NUM2

SUB AL, BL

MOV SUB_RES, AL

RET

SUBTRACTION ENDP

CODE ENDS

END START

Passing parameters to and from procedures:

The data values or addresses passed between procedures and main program are called parameters.

There are four ways of passing parameters:

Passing parameters in registers:

Parameter values can be stored in registers. When procedure is called, in procedures these registers

can be accessed. Similarly, return values can be stored in registers and accessed in main program.

Passing parameters in dedicated memory locations:

This is another way of passing parameters to procedures. Specific memory locations identified by

names can be used to store parameter values in caller procedure. Later in called procedures these

values can be used with the name of memory locations.

Passing parameters with pointers passed in registers:

Instead of passing actual values in registers, pointers which point to these values can be used. The

offset address of variable is stored in SI, DI or BX register. These registers can be used to access

values pointed by them.

Passing parameters using the stack:

To pass parameters to a procedure using the stack, push the parameters on the stack somewhere in the

main program before calling the procedure. In the procedure, instructions can be used in order to read

the parameter values from the stack.

Example: Passing parameters in registers

; Program to add two numbers by passing them as parameters in

; registers to procedure

ASSUME CS:CODE, DS:DATA, SS:STACK_SEG

DATA SEGMENT

NUM1 DB 50H

NUM2 DB 20H

Microprocessor and Programming Procedure and Macro in Assembly Language Program

 Computer Department, Jamia Polytechnic, Akkalkuwa 5

ADD_RES DB ?

DATA ENDS

STACK_SEG SEGMENT

DW 40 DUP(0) ; stack of 40 words, all initialized to zero

TOS LABEL WORD

STACK_SEG ENDS

CODE SEGMENT

START: MOV AX, DATA ; initialize data segment

MOV DS, AX

MOV AX, STACK_SEG ; initialize stack segment

MOV SS, AX

MOV SP, OFFSET TOS ; initialize stack pointer to TOS

MOV BL, NUM1

MOV BH, NUM2

CALL ADDITION

MOV ADD_RES, AL

MOV AH, 4CH

INT 21H

ADDITION PROC NEAR

ADD BL, BH

MOV AL, BL ; return value is copied in AL

RET

ADDITION ENDP

CODE ENDS

END START

Macros:

Whenever it is required to use a group of instructions several times in a program, there are two ways to

use that group of instructions: One way is to write the group of instructions as a separate procedure.

We can call the procedure whenever it is required to execute that group of instructions. But

disadvantage of using a procedure is we need stack. Another disadvantage is that time is required to

call procedures and return to calling program.

When the repeated group of instruction is too short or not suitable to be implemented as a procedure,

we use a MACRO. A macro is a group of instructions to which a name is given. Each time a macro is

called in a program, the assembler will replace the macro name with the group of instructions.

Advantages:

1. Macro reduces the amount of repetitive coding.

2. Program becomes more readable and simple.

Microprocessor and Programming Procedure and Macro in Assembly Language Program

 Computer Department, Jamia Polytechnic, Akkalkuwa 6

3. Execution time is less as compared to calling procedures.

4. Reduces errors caused by repetitive coding.

Disadvantage of macro is that the memory requirement of a program becomes more.

Defining macros:

Before using macros, we have to define them. Macros are defined before the definition of segments.

Assembler provides two directives for defining a macro: MACRO and ENDM.

MACRO directive informs the assembler the beginning of a macro. The general form is:

Macro_name MACRO argument1, argument2, …

 Arguments are optional.

ENDM informs the assembler the end of the macro. Its general form is : ENDM

Example: Addition of two 16-bit numbers using macro

ADDITION MACRO NO1, NO2, RESULT

 MOV AX, NO1

 MOV BX, NO2

 ADD AX, BX

 MOV RESULT, AX

ENDM

ASSUME CS:CODE, DS:DATA

DATA SEGMENT

 NUM1 DW 1000H

 NUM2 DW 2000H

 RES DW ?

DATA ENDS

CODE SEGMENT

START: MOV AX, DATA ; initialize data segment

MOV DS, AX

ADDITION NUM1, NUM2, RES

MOV AH, 4CH

INT 21H

CODE ENDS

END START

Microprocessor and Programming Procedure and Macro in Assembly Language Program

 Computer Department, Jamia Polytechnic, Akkalkuwa 7

In the above example three arguments are used with macro.

Example: To display strings using macro

DISPLAY MACRO MESSAGE

PUSH AX

PUSH DX

MOV AH, 09H

LEA DX, MESSAGE

INT 21H

POP DX

POP AX

ENDM

ASSUME CS:CODE, DS:DATA

DATA SEGMENT

 MSG1 DB ‘Microprocessor and programming$’

 MSG2 DB 10,13,‘Using macros$’

 MSG3 DB 10,13,‘It eliminates repetitive coding$’

DATA ENDS

CODE SEGMENT

START: MOV AX, DATA ; initialize data segment

MOV DS, AX

DISPLAY MSG1

DISPLAY MSG2

DISPLAY MSG3

MOV AH, 4CH

INT 21H

CODE ENDS

END START

Delay loops: (Not in syllabus in ‘G’ scheme)

In order to create delay loops, the steps given below are followed.

1. Determine the exact required delay.

2. Select instructions for delay loop.

3. Find out the number of T-states (clock cycles) required for execution of selected instructions.

4. Find out the time period of clock frequency at which microprocessor is running (T) i.e.

duration of single T-state.

Microprocessor and Programming Procedure and Macro in Assembly Language Program

 Computer Department, Jamia Polytechnic, Akkalkuwa 8

5. Find out time required to execute the loop once. This can be calculated by multiplying the

period T (which is found in step 4) with the number of T-states required (n) to execute the loop

once.

6. Find out the count N by dividing the required time delay Td by the duration for execution of the

loop once (n * T).

Count N = required delay Td / n * T

Example: Write a procedure to generate a delay of 100ms using an 8086 system that runs on 10 MHz

frequency.

Solution:

1) The required delay Td = 100 ms = 100 x 10
-3

 seconds

2) Instructions selected T-states required to execute

 i) MOV CX, COUNT 4

 ii) DEC CX 2

 iii) NOP 3

 iv) JNZ LABEL 16

3) Period T = 1 / 10 MHz

 = 1 / 10 x 10
-6

 = 0.1 micro second

4) No. of cycles required to execute the loop once = 2 + 3 + 16 = 21 T-states

(Note: MOV CX, COUNT will not be in loop.)

Therefore Time required to execute loop once = n x T = 21 x 0.1 micro second = 2.1 micro second

5) Count N = required delay Td / n * T

N = Td / n x T

 = 100 x 10
-3

 / 2.1 x 10
-6

 = (0.1 / 2.1) x 10
6

 = 0.047619 x 10
6

 = 47619

 = BA03H

PROC DELAY NEAR

MOV CX, BA03H

UP: DEC CX

NOP

JNZ UP

Microprocessor and Programming Procedure and Macro in Assembly Language Program

 Computer Department, Jamia Polytechnic, Akkalkuwa 9

RET

DELAY ENDP

Example: 1 second delay

Considering CPU speed = 10 MHz , therefore, 1 T-state = 0.1 µ sec

Td = 1 sec

Instructions selected T-states required to execute

i) MOV BX, COUNT1 4

ii) MOV CX, COUNT2 4

iii) DEC BX 2

 iv) DEC CX 2

v) JNZ LABEL 16

vi) NOP 3

vii) RET 8

Let COUNT2 = 8000H = 32768

T = 1 / 10 MHz = 0.1 µ sec

There are two loops, inner loop requires

T1 = 0.1 µ sec x 4 + (2+3+16) x 32768 x 0.1 µ sec

 = 0.0688132 sec

Outer loop requires

T2 = 0.0688132 + (16 +2) x 0.1 µ sec

 = 0.068815

COUNT1 = Td / T2

 = 1 / 0.068815

 = 14.5317 ≈ 15 = 000FH

ASSUME CS:CODE

CODE SEGMENT

DELAY PROC

 MOV BX, COUNT1 ; COUNT1 = 000FH

ABOVE: MOV CX, COUNT2 ; COUNT2 = 8000H

UP: NOP

 DEC CX

 JNZ UP

 DEC BX

 JNZ ABOVE

Microprocessor and Programming Procedure and Macro in Assembly Language Program

 Computer Department, Jamia Polytechnic, Akkalkuwa 10

 RET

DELAY ENDP

CODE ENDS

Reentrant and recursive procedures:

A procedure is said to be re-entrant, if it can be interrupted, used and re-entered without losing or

writing over anything.

In some situation it may happen that procedure-1 is called from main program, procrdure-2 is called

from procedure-1, and procrdure-1 is again called from procdure-2.

In this situation program execution flow re-enters in the procedure1. These types of procedures are

called re-entrant procedures.

OR

1) The main program calls the multiply procedure.

Microprocessor and Programming Procedure and Macro in Assembly Language Program

 Computer Department, Jamia Polytechnic, Akkalkuwa 11

2) In between execution of multiply procedure, when an interrupt occurs, 8086 branches to interrupt

service routine

3) ISR routine then calls the multiply procedure when it needs it. The RET instruction at the end of

multiply procedure returns execution to the ISR.

4) After execution of ISR, an IRET instruction returns program execution to the multiply procedure at

the instruction next to the point where the interrupt occurred.

5) Once again multiply is executed with data values of the main program.

6) A RET at the end of multiply returns execution to the main program.

Recursive Procedures:

A recursive procedure is a procedure which calls itself. Here, the program sets aside a few locations in

stack for the storage of the parameters which are passed each time the computation is done and the

value is returned. Each value returned is then obtained by popping back from the stack at every RET

instruction when executed at the end of the procedure.

Example:

ASSUME CS:CODE, DS:DATA
DATA SEGMENT
 N DB 04H
 RES DW ?
DATA ENDS
CODE SEGMENT
START: MOV AX, DATA
 MOV DS, AX
 MOV AL, N
 MOV AH, 00H
 CALL FACT
 INT 3
FACT PROC

Microprocessor and Programming Procedure and Macro in Assembly Language Program

 Computer Department, Jamia Polytechnic, Akkalkuwa 12

 CMP AX, 01 ;If N=1, FACT=1 Else FACT=N*FACT(N-1)
 JZ EXIT
 PUSH AX
 DEC AX ;N-1
 CALL FACT ;FACT(N-1)
 POP AX
 MUL RES ;N*FACT(N-1)
 MOV RES, AX ;RES=FACTORIAL
 RET
EXIT:
 MOV RES, 01
 RET
FACT ENDP
CODE ENDS
END START

Difference between Near Call and Far Call Procedures:

Near Call Far Call

A near call is a call to procedure which is in same

code segment.

A far call is a call to procedure which is in

different code segment.

The content of CS is not stored. The content of CS is also stored along with IP.

In near call, content of SP is decremented by 2

and contents of offset address IP is stored.

In far call, contents of SP are decremented by 2

and value of CS is loaded. Then SP is again

decremented by 2 and IP is loaded.

Example: CALL Delay Example: CALL FAR PTR Delay

Microprocessor and Programming Procedure and Macro in Assembly Language Program

 Computer Department, Jamia Polytechnic, Akkalkuwa 13

Difference between Macro and Procedure:

Macro Procedure

Macro is a small sequence of code of the same

pattern, repeated frequently at different places,

which perform the same operation on different

data of the same data type.

Procedure is a series of instructions is to be

executed several times in a program, and called

whenever required.

The MACRO code is inserted into the program,

wherever MACRO is called, by the assembler.

Program control is transferred to the procedure,

when CALL instruction is executed at run time.

Memory required is more, as the code is inserted

at each MACRO call

Memory required is less, as the program control is

transferred to procedure.

Stack is not required at the MACRO call. Stack is required at Procedure CALL.

No overhead time required. Extra overhead time is required for linkage

between the calling program and called

procedure.

Parameter passed as the part of statement which

calls macro.

Parameters passed in registers, memory locations

or stack.

RET is not used RET is required at the end of the procedure

Macro is called using:

<Macro_name> [argument list]

Procedure is called using:

CALL <Procedure_name>

Directives used: MACRO, ENDM, LOCAL Directives used: PROC, ENDP, FAR, NEAR

. Example:

Macro_name MACRO

------ instructions

ENDM

Example:

Procedure_Name PROC

Procedure Statements

Procedure_Name ENDP

